Lrrc75b is a novel negative regulator of C2C12 myogenic differentiation

نویسندگان

  • Yuechun Zhong
  • Liyi Zou
  • Zonggui Wang
  • Yaqiong Pan
  • Zhong Dai
  • Xinguang Liu
  • Liao Cui
  • Changqing Zuo
چکیده

Many transcription factors and signaling molecules involved in the guidance of myogenic differentiation have been investigated in previous studies. However, the precise molecular mechanisms of myogenic differentiation remain largely unknown. In the present study, by performing a meta-analysis of C2C12 myogenic differentiation microarray data, we found that leucine-rich repeat-containing 75B (Lrrc75b), also known as AI646023, a molecule of unknown biological function, was downregulated during C2C12 myogenic differentiation. The knockdown of Lrrc75b using specific siRNA in C2C12 myoblasts markedly enhanced the expression of muscle-specific myogenin and increased myoblast fusion and the myotube diameter. By contrast, the adenovirus-mediated overexpression of Lrrc75b in C2C12 cells markedly inhibited myoblast differentiation accompanied by a decrease in myogenin expression. In addition, the phosphorylation of extracellular signal-regulated kinase 1/2 (Erk1/2) was suppressed in the cells in which Lrrc75b was silenced. Taken together, our results demonstrate that Lrrc75b is a novel suppressor of C2C12 myogenic differentiation by modulating myogenin and Erk1/2 signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Map4k4 as a novel suppressor of skeletal muscle differentiation.

Myoblast differentiation into mature myotubes is a critical step in the development and repair of human skeletal muscle. Here we show that small interfering RNA (siRNA)-based silencing of the Ste20-like mitogen-activated protein 4 kinase 4 (Map4k4) in C2C12 myoblasts markedly enhances expression of myogenic differentiation genes, myoblast fusion, and myotube diameter. In contrast, adenovirus-me...

متن کامل

Fibroblast Growth Factor 21 Promotes C2C12 Cells Myogenic Differentiation by Enhancing Cell Cycle Exit

Fibroblast growth factor 21 (FGF21), a secretion protein, functions as a pivotal regulator of energy metabolism and is being considered as a therapeutic candidate in metabolic syndromes. However, the roles of FGF21 in myogenic differentiation and cell cycle remain obscure. In this study, we investigated the function of FGF21 in myogenesis and cell cycle exit using C2C12 cell line. Our data show...

متن کامل

The role of Delta-like 1 shedding in muscle cell self-renewal and differentiation.

Myogenic cells have the ability to adopt two divergent fates upon exit from the cell cycle: differentiation or self-renewal. The Notch signaling pathway is a well-known negative regulator of myogenic differentiation. Using mouse primary myoblasts cultured in vitro or C2C12 myogenic cells, we found that Notch activity is essential for maintaining the expression of Pax7, a transcription factor as...

متن کامل

TIMP3: a physiological regulator of adult myogenesis.

Myogenic differentiation in adult muscle is normally suppressed and can be activated by myogenic cues in a subset of activated satellite cells. The switch mechanism that turns myogenesis on and off is not defined. In the present study, we demonstrate that tissue inhibitor of metalloproteinase 3 (TIMP3), the endogenous inhibitor of TNFalpha-converting enzyme (TACE), acts as an on-off switch for ...

متن کامل

Expression of the Gs protein alpha-subunit disrupts the normal program of differentiation in cultured murine myogenic cells.

The manner in which growth factors acting at the cell surface regulate activity of myogenic basic-helix-loop-helix proteins in the nucleus and thus control the fate of committed skeletal myoblasts remains poorly understood. In this study, we report that immunoreactive Gs protein alpha-subunits (Gs alpha) localize to nuclei of proliferating C2C12 myoblasts but not to nuclei of differentiated pos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2016